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Abstract: The market for wrist-worn devices is growing at previously unheard-of speeds. A conse-
quence of their fast commercialization is a lack of adequate studies testing their accuracy on varied
populations and pursuits. To provide an understanding of wearable sensors for sports medicine,
the present study examined heart rate (HR) measurements of four popular wrist-worn devices,
the (Fitbit Charge (FB), Apple Watch (AW), Tomtom runner Cardio (TT), and Samsung G2 (G2)),
and compared them with gold standard measurements derived by continuous electrocardiogram
examination (ECG). Eight athletes participated in a comparative study undergoing maximal stress
testing on a cycle ergometer or a treadmill. We analyzed 1,286 simultaneous HR data pairs between
the tested devices and the ECG. The four devices were reasonably accurate at the lowest activity level.
However, at higher levels of exercise intensity the FB and G2 tended to underestimate HR values
during intense physical effort, while the TT and AW devices were fairly reliable. Our results suggest
that HR estimations should be considered cautiously at specific intensities. Indeed, an effective
intervention is required to register accurate HR readings at high-intensity levels (above 150 bpm). It
is important to consider that even though none of these devices are certified or sold as medical or
safety devices, researchers must nonetheless evaluate wrist-worn wearable technology in order to
fully understand how HR affects psychological and physical health, especially under conditions of
more intense exercise.

Keywords: heart rate; wearables; physical exertion; exercise prescription; digital health; monitoring;
photopletismography; accuracy; medical devices

1. Introduction

Currently, wearable technology applied to biomedical data control in sports medicine
is widespread among different types of users (e.g., athletes, patients, and people who
practice sports or exercise), and is continuously growing [1–13]. Exercise as medicine
is a global health initiative encouraging physicians and other healthcare professionals
to include physical activity evaluation and training programs in every patient visit [14]. In
this framework, wearable technology applied to health and fitness has been confirmed as a
ubiquitous technology that helps to enhance performance and prevent injury [3,7,8,12,15,16].
Indeed, Google Trends 2020 reports with respect to the consumers’ increasing interest in
wearable devices indicate that they are probably attracted by a desire to improve their
quality of life [17].
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Electronic medical devices based on light emitters (LED) have been on the market
for several decades. Their use for medical care was first proposed in the late 1990s [18].
Biomedical data monitoring in daily life unquestionably has the potential to prevent and
predict diseases with almost no inconvenience to the user [3,6,19]. As a matter of fact, only
within these last two decades have common portable devices been developed to monitor
health in daily life, providing the opportunity for different types of users to self-monitor
their own physical activity [1,2,5–7,9,12,13,19–22]. Thompson’s global electronic survey,
which determines health and fitness trends over the past the year, indicates that the use
of wearable technology for sports and health medicine has been the number one trend
beginning with its first introduction in the survey in 2016, except for 2018 when it was
third and 2021 when it was second [1,14]. Ten years ago, a study conducted in the United
States indicated that 69% of the adult population wore activity wristbands for personal
monitoring [23]. Other reports predicted that sales of activity wristbands for sport would
exceed USD 5 billion by 2019 [24] and that the number of connected wearable devices
would reach more than one billion by 2022 [25].

Nevertheless, there are many inaccurate and inconclusive wearable devices on the
market that purport to monitor activity, such as smart watches, heart rate monitors, GPS
tracking devices, activity trackers, and smart glasses [1,14,21]. Indeed, recent studies rec-
ommend caution when interpreting metrics reported from consumer-wearable devices [10].
Earlier models of wearable devices relied solely on movement sensors such as accelerome-
ters to estimate energy expenditure [26]. However, novel devices include photoplethysmo-
gram (PPG) signals [27–29], which allow estimation of other data, such as biomedical data,
and have improved accuracy when estimating energy expenditure [30,31]. This technology
has been applied to wrist devices due to improvements in the miniaturization of the pro-
cessing hardware (to convert raw signals in real-time into interpretable data) and to longer
battery life.

The heart rate (HR), which increases with exertion, can be used to measure the intensity
of an exercise session or to correlate with the maximum oxygen uptake VO2,max as an indi-
cator of aerobic endurance [32,33]; VO2,max represents the maximum capacity of the human
body to consume oxygen during activity. Hence, it is the most accurate and simple indicator
for determining aerobic work capability [34]. A lower HR for a given exertion indicates
greater cardiorespiratory and muscular fitness. Therefore, HR frequencies can be used to
prescribe exercise, either as a percentage of an individual’s maximum HR reserve or based
on a certain threshold determined through different mathematical algorithms [35–37]. In
addition, HR variations serve as important markers for training adaptations and cardiovas-
cular fitness assessment [18,38–40].

Although HR was first identified as an index of metabolic rate [41], nowadays HR
estimation is a valuable indicator of physiological adaptation and intensity of effort [42–44].
In clinical settings, HR is frequently monitored via electrocardiogram (ECG), which uses
electrodes on the chest to detect the heart’s repolarization and depolarization, or by pho-
toplethysmography, such as in a pulse oximeter [10,45]. Heart Rate Variability (HRV)
measures the interval between successive heartbeats [46], and is correlated with autonomic
nervous system function [10]. In contrast to a diseased heart, a healthy heart exhibits a
degree of time oscillation between beats [47]. When comparing HRVs between exercise
sessions, changes in HRV can help to determine training intensities and might indicate
over-training or sickness [48–50].

In recent years, the development of new non-invasive methods and systems such as
PPG, optical spectroscopy, and pulse oximetry have improved HR measurements during
exercise [51,52]. Wrist-worn devices for activity and human resources monitoring have
become increasingly popular, and can help motivate athletes or patients [53]. However,
wearable technology faces several important limitations, some biologically inherent and
others technological, that avert the proliferation of wearable medical devices, including the
lack of high-quality validation studies at different intensity levels [3,13,15,19,42,43,54–61].
Although accuracy in HR measurement is acceptable in chest strap and electrode-based
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heart rate monitors, the accuracy of HR measurement in wrist wearables with PPG is
uncertain [56,62–66]. The accuracy of any wearable medical device is increasingly relevant,
as it can influence both medical decisions and patient outcomes [15,19,42,43,60]. In cardiac
patients as well as other patients, after hospital discharge [67] an integral validation of these
devices is vital in light of the need to monitor the patient’s cardiac rehabilitation through
the recommended HR thresholds [68–70].

Furthermore, there are additional limitations for wrist-worn devices that could have
negative effects. In steady-state aerobic exercises such as cycling, wrist-worn activity
devices have proven to be reasonably accurate in estimating HR [63,71]. However, in
non-steady exercises such as body weight lifting, CrossFit, and other high-intensity interval
training (HIIT) exercises, accuracy is compromised [54], especially at HR frequencies higher
than 150 bmp [72–74]. Furthermore, because these devices are typically worn on the
nondominant wrist during these multiple forms of exercise, motion artifacts may introduce
noise in the detected signal [27,75–77]. Hence, for fitness professionals who supervise users
to monitor their physical activity it is crucial to evaluate the accuracy of these devices.

Consequently, considering the growing popularity of wearable devices with con-
sumers and researchers [4,5,8,10,56,57], queries about their reliability are becoming of
paramount importance, along with the need to assess their validity and accuracy for
health and recreation purposes. Unlike clinically approved devices, further research
is needed to evaluate these devices. Therefore, a deeper analysis of the data obtained
through these new devices is urgent, as only 5% of these technologies have been formally
validated [10,63,78–80].

The current investigation aims to analyze the accuracy of four of the most popular
wrist-worn devices, Fitbit Charge (FB), Apple Watch (AW), Tomtom Runner Cardio (TT),
and Samsung G2 (G2), as a function of different intensity levels during a maximum stress
test performed either on a treadmill or a cycle ergometer. A second goal of this study is
to determine whether these devices are suitable as medical devices for assessing exercise
safety or user health. The rest of this paper is structured as follows. Section 2 describes the
selection of the participants in Section 2.1, the study settings in Section 2.2, the tested heart
rate devices in Section 2.3, and the statistical analysis in Section 2.4. The results and data
analysis are presented in Section 3 and discussed in Section 4. Finally, Section 5 provides
our conclusions based on the main findings from this research.

2. Methods
2.1. Participant Selection

The inclusion criteria for subject selection were: athletes aged 18 to 55 performing
regular practice of a competitive sport in national and regional tournaments for at least
two years prior to the study and not having any current physical limitations, medical con-
ditions, or psychiatric conditions. All subjects trained two to four times a week between 1
and 3 h/day. The volunteers maintained this sports practice until the day before the present
study was carried out. Prior to admittance to the study, all subjects were evaluated for their
cardiovascular health. None of the volunteers reported any respiratory or cardiac disease,
presenting average spirometric values. Eight active and healthy athletes (85.7% male) who
met the aforementioned inclusion criteria, volunteered to participate in this study. The
athletes performed an incremental exercise test on a treadmill or a cycle ergometer while
wearing two devices at the same time, one on each wrist, while electrocardiography data
were recorded.

2.2. Study Setting

The exercise tests were performed in the Physiology Laboratory at the Professional
School of Sports Medicine of the Faculty of Medicine, Universidad Complutense de Madrid,
Spain. In conformity with the review policy statement, the experimental protocol was
approved by the Ethics Committee of the Hospital Clinico San Carlos, Madrid (HCSC) (no:
16/123-E) and conducted according to the Helsinki Declaration. All subjects provided their
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written informed consent to participate after the procedure and the study risks had been
explained to them.

The maximal stress tests were carried out either on a treadmill ergometer with an
incremental protocol (fixed slope of 1%) reaching a final speed of 16 km/h, or on a cycle
ergometer with an incremental protocol of 25 W/min reaching a power that oscillated
between 250 and 350 W, with all the athletes reaching HR frequencies higher than 150 bpm.

HR time series were extracted from the devices and compared with the HR data ob-
tained from the electrocardiogram. During the athletes’ preparation, twelve ECG electrodes
were placed for the 12-lead ECG reading. The area was first prepared by shaving and
alcohol sterilization to ensure a correct electrode position while wearing a tubular mesh
top. Subsequently, blood pressure was taken to establish a baseline measurement and
electrocardiographic readings were taken at rest in supine and standing positions. At the
beginning of the test, time and data were synchronized among the electrocardiogram and
the wrist-worn devices. Parameter readings and measurements during the stress test were
collected every 10 seconds. In addition, a mask was placed over the athlete’s nose and
mouth in order to prevent air leakage and properly analyze expired gases, as shown in
Figure 1.

Figure 1. Performance athlete during the exercise stress test on the treadmill. The HR device is placed
on the wrist, the electrodes are placed for electrocardiographic recording, and the mouthpiece is for
the gas flow analyzer.

2.3. HR Measuring Devices

For this study, four of the most popular wrist-worn devices (Fitbit Charge (Fitbit, CA,
USA), Apple Watch (Apple, CA, USA), Tomtom runner Cardio (Tomtom, Amsterdam, The
Netherlands), Gear S2 (Samsung, Suwon, Republic of Korea)) were selected to verify the
HR accuracy because of their commercial availability, cost-effectively, light-weight, and
popularity. The accuracy of these four wrist devices during a maximal exercise stress test
was evaluated using a Norav 12-lead exercise electrocardiographic (ECG) recorder as the
gold standard. The participants wore two different devices on each wrist, and wore the
ECG at the same time. The data extraction procedure and characteristics of each device are
specified in the following subsections.

2.3.1. Tomtom Runner Cardio (TT)

Exercise data extraction was straightforward using the standard tcx format from
Garmin. The data recording interval was one second.
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2.3.2. FitBit (FB)

This device featured the option of exporting exercise data in the standard tcx format
from Garmin. The data recording interval was five seconds.

2.3.3. Apple Watch (AW)

This device did not offer a data export function from a specific exercise session to a
computer; extraction is only possible globally. The device produces a folder containing
a compressed XML file with the complete measurement history (the file size can easily
exceed 200 MB). Although the document’s format is specific to the device’s brand, a simple
parser was written to select XML tags related to the pairs of data (time, HR frequency)
during the stress test. The data recording interval was five seconds.

2.3.4. Gear S2 (G2)

This device did not offer the possibility of extracting the data to a file that could
be directly exported. The method for extracting the HR time series lay in producing
screenshots of the S-Health application and exporting the data in numerical form using an
ad hoc algorithm. The data recording interval was five seconds.

2.4. Statistical Analysis

Following the British Standards Institution 2019 standards for medical electrical equip-
ment, the accuracy root mean square (Arms) difference between the HR values of the device
and the HR values of the ECG as a gold standard was calculated [81]. The Arms includes a
combination of a standard systematic error or bias component and a random component,
providing a single number as a measurement of both bias and precision. Therefore, the
Arms statistic is usually evaluated when the overall accuracy of a device is tested [82].

Arms =

√
∑N

i=1(HRtesteddevice − HRECG)2

N
(1)

Furthermore, the difference in accuracy between each device and the gold standard
ECG was assessed by determining the interclass correlation coefficients (ICC) and their 95%
CI, then constructing Bland–Altman graphs. Mean overall scores were compared between
the devices and ECG using Student’s t-test for paired samples. For each test, the level of
significance was set at 5%. Statistical analysis was performed using the SPSS 15.0 package.
Quantitative variables are presented with their means and standard deviations (SD).

Lastly, the absolute percent errors (APE) with respect to ECG were calculated to
construct ordered boxplots stratified by HR. The APE is provided by

%Error =
HRtesteddevice − HRECG

HRECG
· 100 (2)

The Tukey outlier detection rule was used to find any extreme outliers in APE values
for each device and metric combination [83]. Spearman’s rank correlation (R) was calcu-
lated for each device, with the results provided in the Supplementary Material, Figure S2.

3. Results

The tested devices, athletes’ sports, and anthropometric characteristics such as age,
size, weight, height, and body mass index (BMI) are presented in Table 1. Based on the BMI
and VO2,max, respectively, all eight volunteers (seven men and one woman) were classified
as having normal weight and good physical fitness condition [84].

Figure 2 represents the HR measurements provided by the wristband for four athletes
compared to the reference ECG data in the two different tests, treadmill (top panels, (a) and
(b)) and cycle ergometer (bottom panels, (c) and (d)) at all exercise intensities. In all the
graphs, the black line corresponds to the reference curve related to the ECG data, which
is considered the benchmark of the test, while the blue and green lines correspond to the
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tested devices. The differences with the ECG data are marked by error bars. As can be
seen, the HR rises steadily according to the athlete’s increasing effort intensity during the
test. The accuracy root-mean-square (Arms) was calculated for each device. The TT and
AW devices have the lowest value, while the G2 has the highest value, which indicates
worse accuracy.

Table 1. Anthropometric characteristics of the participants, their practiced sports, tested devices, and
type of test. TM: treadmill; CE: cycle ergometer.

ID Age (years) Size (m) Weight (Kg) BMI
(Kg/m2)

VO2,max
(mL/kg/min) Sport Tested

Devices Test Type

00 40 1.85 81.6 23.84 52.10 Athletics TT+FB TM
01 39 1.69 69.9 24.47 57.42 Triathlon TT+FB CE
02 25 1.59 53 20.96 48.77 Athletics AW+FB CE
03 42 1.73 60 20.05 57.95 Athletics AW+FB CE
04 25 1.7 57.5 19.90 49.81 Soccer AW+G2 CE
05 26 1.78 65.2 20.58 67.36 Athletics AW+G2 CE
06 32 1.74 72 23,78 60.15 Cycling AW+FB CE
07 51 1.74 81 26.75 42.00 Athletics AW+FB TM

X ± SD 35 ± 9.53 1.73 ± 0.07 67.53 ± 10.55 22.54 ± 2.51 54.45 ± 7.88

a) b)

c) d)

Figure 2. Wristband measurements for four athletes compared to the reference ECG data in the two
different tests: treadmill (top panels, (a,b)) and cycle ergometer (bottom panels, (c,d)). The black line
corresponds to the ECG data, while the blue and green lines correspond to the tested devices. The
error bars denote differences between the ECG data and the tested device.

All devices show high sensitivity to motion artifacts and fail to follow accurate HR
when the athletes reach levels of maximum effort (higher HR). Motion artifacts are more
perceptible in the treadmill test than in the cycle ergometer test due to the athlete’s move-
ments. However, a high variability exists between the devices under the same conditions,
i.e., the same type of test (cycle ergometer or treadmill) and HR. A comparison of the
performance of the devices for the eight volunteers and a deeper analysis of the Spearman’s
rank correlation (R) can be found in the Supplementary Materials, Figures S1 and S2.

All available data from each instrument were processed in Bland–Altman form in
order to obtain a more global view of the devices’ performance. Data was reduced to
measurements every 10 s (the available ECG data rate) by averaging or interpolating the
extracted data from the four devices. The results provided by the four tested devices at all
exercise intensities are shown in Figure 3. The blue dots correspond to the data extracted
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from the cycle ergometer tests, while the red dots correspond to the tests on the treadmill.
The green areas display the limits of agreements for each device, and the dashed green line
corresponds to the mean difference. The Arms values are specified for each test and device.

b)

d)

a)

c)

Figure 3. Bland–Altman diagrams of successive differences showing heart rate measurements for the
four devices. The mean heart rate is shown on the x-axis and the difference between the specified
device and the ECG rate is shown on the y-axis. Red dots correspond to the test on the treadmill and
blue dots correspond to the test on the cycle ergometer. The green areas indicate the limits of the
agreement. Panel (a) compares the TT runner and the ECG, Panel (b) compares the AW and the ECG,
Panel (c) compares the FB Charge and the ECG, and panel (d) compares the G2 and the ECG.

High variability and significant inaccuracies between the ECG and the device HR
measurements at high exercise intensities were observed among the different tests. For this
reason, we performed a detailed statistical study based on different HR ranges (less than
110 bpm, from 110 to 150 bpm, and greater than 150 bpm). Table 2 shows the differences in
the paired means between the ECG and each device for the whole sample and stratified
by HR range (≤100 bpm, 110–150 bpm y > 150 bpm). We analyzed 1,286 simultaneous
HR data pairs between the four tested devices and the ECG used as the reference standard.
There were a total of 321 pairs from the TT runner, 440 from the AW, 377 from the FB,
and 148 from the G2. The mean (SD) of each device, mean (SD) of the difference between
the tested device measurement and the reference standard, mean relative difference (SD;
%), mean absolute difference (SD; %), correlation between the measures, and interclass
correlation coefficients (ICC) were determined, along with their 95% CIs.

Lastly, device boxplots stratified by HR intervals were performed to assist with visual-
ization and analysis. Following Equation (2), Figure 4 shows the absolute percent errors
(APE) for each device. The box limits show the range of 50% of the data, with a center black
line designating the median value. The lines extending from each box represent the range
of the remaining data, with dots placed there to represent outlier values. The empty dots
refer to the most distant outliers. The green boxes correspond to HR measurements below
100 bmp, the blue boxes correspond to HR measurements between 100–150 bmp, and the
red boxes correspond to HR measurements greater than 150 bmp.
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Table 2. Paired mean difference (ECG vs. device) and accuracy in the whole sample and stratified by
HR range. SD: standard deviation; CI: confidence interval; HR: heart rate; ECG: electrocardiography;
ICC: interclass correlation coefficient.

ECG vs. Device N Mean ECG (SD) Mean Device (SD) Mean Difference
ECG-Device (CI 95%) p ICC (CI 95%)

All Measurements

ECG vs. FB 377 127.5 (28.6) 115.5 (26.5) 11.9 (9.9; 14.0) <0.001 0.675 (0.434; 0.798)
ECG vs. TT 321 134.9 (27.5) 133.9 (27.2) 1.1 (0.2; 1.9) 0.013 0.961 (0.952; 0.969)
ECG vs. AW 440 129.7 (29.2) 129.4 (29.5) 0.3 (−0.3; 1.0) 0.301 0.970 (0.96; 0.97)
EECG vs. G2 148 143.3 (25.4) 80.5 (14.2) 62.7 (58.1; 67.4) <0.001 0.005 (−0.022; 0.040)

Interval <100 HR

ECG vs. FB 117 94.3 (12.4) 89.7 (14.8) 4.5 (2.9; 6.1) <0.001 0.746 (0.568; 0.844)
ECG vs. TT 75 98.2 (9.9) 98.3 (13.3) −0.1 (−2.2; 2.1) 0.937 0.683 (0.540; 0.787)
ECG vs. AW 123 93.9 (12.3) 94.4 (14.8) −0.5 (−2.0; 1.0) 0.514 0.799 (0.724; 0.855)
ECG vs. G2 16 103.6 (4.6) 76.8 (1.36) 26.7 (24.5–29.0) <0.001 0.007 (−0.009; 0.052)

Interval 100–150

ECG vs. FB 167 130.0 (11.6) 119.7 (18.6) 10.3 (7.2; 13.3) <0.001 0.148 (0.004; 0.288)
ECG vs. TT 132 129.5 (11.07) 129.2 (11.6) 0.3 (−0.4; 0.9) 0.449 0.938 (0.914; 0.956)
ECG vs. AW 196 129.8 (11.6) 130.2 (11.9) 0.4 (−0.2; 1.0) 0.239 0.930 (0.908; 0.946)
ECG vs. G2 70 130.2 (11.9) 80.35 (15.3) 49.9 (45.8–53.9) <0.001 0.030 (−0.030; 0.126)

Interval >150 HR

ECG vs. FB 93 164.8 (8.7) 140.3 (21.9) 24.5 (18.5; 9.4) <0.001 −0.019 (−0.111; 0.094)
ECG vs. TT 114 165.5 (8.4) 162.7 (10.4) 2.7 (1.0–4.4) 0.002 0.528 (0.374; 0.653)
ECG vs. AW 121 166 (10.7) 164.8 (13.8) 1.2(−0.4; 2.8) 0.146 0.729 (0.634; 0.803)
ECG vs. G2 62 168.3 (12.2) 81.7 (14.6) 86.6 (80.6–92.5) <0.001 −0.024 (−0.035; 0.065)

< 100       100 – 150        >150   (bmp)

Gear S2

< 100       100 – 150        >150   (bmp)

FitBit

Apple Watch

< 100       100 – 150        >150   (bmp)< 100       100 – 150        >150   (bmp)

Tomtom
a) b)

d)c)

Figure 4. Box plot visualization of the tested devices’ absolute percent error (APE). The green boxes
correspond to HR measurements below 100 bmp, the blue boxes correspond to HR measurements
between 100-150 bmp, and the red boxes correspond to HR measurements greater than 150 bmp.
(a) TT, (b) AW, (c) FB, and (d) G2.

4. Discussion

This current investigation examined how effectively four popular wrist-worn activity
monitors (Fitbit Charge, Apple Watch, Tomtom Runner Cardio, and Gear S2) estimated HR
throughout a maximal test performed either on a treadmill or a cycle ergometer. We found
reasonable accuracy in HR estimation for two of these devices (AW and TT), especially
at lower-intensity exercises, which is consistent with earlier studies [31,43,62,69,85]. Our
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findings indicate a positive difference in averages between the ECG and each device.
Therefore, the tested devices tend to underestimate HR concerning the ECG, which is
more noticeable in the case of the lower accuracy devices, namely, the FB and the G2.
These results concur with other previous studies that examined HR estimations across
various devices [63,71], although these studies only carried out monitoring after HR had
stabilized under steady-state settings. According to another assessment, HR readings are
typically more accurate on a cycle ergometer or at rest than on a treadmill [86]. Indeed,
exercises involving an unstable wrist, such as those performed on elliptical machines or
when walking or running provide less accurate HR readings than exercises involving a
stable wrist, such as the cycle ergometer [87,88].

Although the lowest Arms when measuring HR were observed for the TT and the AW,
as shown in panels (a) and (b) of Figure 3, significant variability between the different tests
can be observed. Motion artifacts such as oscillation or arm movements are more visible
for HR frequencies above 130 bmp. Indeed, in the case of AW, considerable differences
appear for the treadmill test due to motion artifacts (see the red dots). On the contrary, for
FB the appearance of a large cluster of blue points in the top part of panel (c) indicates
that the Arms is higher for the cycle ergometer than the treadmill. Similar behavior was
observed in a comparative study of the Fitbit Charge 2 and Garmin Vivosmart HR. Here,
a significantly lower relative error was found for activities with repetitive motion of the
upper torso compared to activities with no repetitive motion of the upper torso, such as
the cycle ergometer test [54]. These unexpected differences could be a consequence of the
configuration of the cycle ergometer, which has a magnetic brake that can interfere with
non-shielded devices [89,90]. The G2 observed a remarkably high bias (mean difference) at
almost all levels of exercise intensity (see panel (d) of Figure 3), which is in agreement with
the reported results of a previous study [63]

In addition, motion artifacts present one of the most challenging problems for HR
estimations under extreme activity settings [91,92]. Prior studies have revealed a lack of
accuracy of PPG sensors when determining HR during activities involving significant
physical exertion or repetitive contractions of the muscles [27,52,87,93,94], particularly
above 150 bpm [74,95]. PPG signals can be obstructed, resulting in poor data quality due
to a reduction in contact between the device’s PPG sensor and the skin during activities
involving prolonged muscle contractions or more intense workouts [27,94]. In addition,
according to Parak et al., the type of sensor and the position in which the device is worn
are significant factors determining the accuracy [96].

Within the last decades, effective algorithms to improve the quality of the signal
in the presence of motion artifacts for exercises performed above 150 bpm have been
developed [87,91,97–100], for instance, by processing context information using additional
on-body sensors and light sources [101,102], adaptive noise cancellation using accelerom-
eters as a noise reference [103], adaptive noise cancellation using an integrated PPG sen-
sor [104], deep learning methods [105], and techniques based on spectral analysis, such as
traditional fast Fourier transform (FFT) [27].

The majority of previous studies carried out on the determination of HR on wrist-worn
devices have shown limited accuracy [85,106–108], typically with measurements that may
be somewhat understated [76,109–111]. A number of studies have attempted to correlate
wearable HR measurements by PPG with those from a reference ECG signal as a gold
standard [20,51,85,93,109]. Indeed, Boudreaux et al. simultaneously determined the accu-
racy of eight wearable devices, six wrist-worn, one chest-worn, and one ear-worn, during a
graded cycling exercise test and during a structured resistance exercise regimen [111]. They
found a significant underestimation of HR as exercise intensity increased across all devices;
however, none of these studies analyzed accuracy according to HR stratification.

A study of FB and AW for very light, light, moderate, vigorous, and very vigorous
intensities based on ECG-measured HR showed that the AW had the lowest relative error
rate compared to FB at all exercise intensities; however, the accuracy of both devices was
reduced as exercise intensity increased [112]. A study evaluating the accuracy of the Polar
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M600 optical heart rate monitor during various physical activities reported the highest
HR percent accuracy during cycle intervals and the lowest during circuit weight training.
In addition, there was a tendency toward HR underestimation as intensity increased and
toward overestimation when intensity decreased. The accuracy was higher during periods
of steady-state cycling, walking, jogging, and running, though less accurate as intensity
increased [113].

In this context, [62] tested the accuracy of six types of wearable devices on 50 volunteers
walking or running on a treadmill. In their study, the TT showed the best accuracy while the
FB showed the poorest, which is similar to the results we report here. According to a recent
systematic review of studies of various models of FB devices against reference measures of
energy expenditure, heart rate, and steps, FB devices are likely to underestimate heart rate.
However, this underestimation can, on average, be acceptable for steps and heart rate [114].

Moreover, under conditions of intense physical activity the accuracy of heart rate
measurement is significantly decreased [64,110,115]. Studies have yet to critically compare
devices with a gold standard method approved by the FDA. Indeed, the manufacturers
have yet to propose a robust validation system for these devices [61,63,68]. The type of
exercise and the conditions in which the exercise is performed influence the reproducibility
of HR measurement by these devices [74,116,117]. Although there are many studies about
accuracy in the determination of HR in wrist-worn devices during rest [118,119], as well
as in different physical activities (sitting, standing, walking slowly, walking fast, running,
cycling, etc.) [49,63,64,74,76,85,106,110,120–131], to the best of our knowledge there has
been no research into the reliability of these specific devices focused on heart rate ranges
compared to conventional ECG results.

In this framework, one of our goals was to determine a threshold HR value at which
motion artifacts become significant. For our analysis based on stratified HR ranges, see
Table 2; it can be seen that the TT and AW devices present insignificant differences in
means concerning the ECG in the intervals <100 HR, with ICC = 0.683 and ICC = 0.799,
respectively. Between 100–150 HR, they show a higher degree of accuracy, with good
or excellent accuracy when ICC = 0.938 and ICC = 0.930, respectively. It is somewhat
surprising that the ICC is lower for HR < 100 bmp than in the 100–150 HR interval. This fact
could be attributed to distortion of the PPG signal or delays in the device response time to
HR variations. Indeed, as Iyriboz et al. assumed, during heavy exercise for HR > 155 bmp
the oscillations of the pulse pressure waveform are distorted in a way that interferes with
the PPG signal [74].

Figure 3 shows that the highest differences for TT start at 128 bmp for the treadmill
test, with an Arms = 9.39, while for the cycle ergometer test the outlier values appear at
HRs greater than 150 bmp, with an Arms = 5.85. In the case of the AW, although there
are isolated dots for HR between 100 and 120 bmp for both tests, the Arms = 18.34 for the
treadmill test, while for the cycle ergometer we obtain a low Arms = 4.47. In addition, as
the intensity increases in the HR ≥ 150 bmp range the level of accuracy is moderate, with
ICC = 0.528 and ICC = 0.729, respectively, maintaining minor differences in the means
concerning the ECG. These results corroborate those of Boudreaux et al. [111] and Wang
et al. [69], who reported that the AW was highly accurate in measuring heart rate during
graded exercise cycling and various aerobic activities, respectively.

Furthermore, for the FB and G2 the differences between the HR averages and the
ECG data increase significantly as the HR increases, showing a poor level of accuracy,
especially for HR ≥ 150 HR, for which the ICCs are 0.019 and −0.024, both with p values
less than 0.001. Panel (c) of Figure 3 shows a high Arms = 25.25 for the FB device in the cycle
ergometer test at frequencies between 100–150 bmp, with a low ICC = 0.148. In contrast, a
lower Arms = 10.70 was estimated for the treadmill test. Both of these results are consistent
with the study by Reddy et al. [54]. Lastly, the performance of the G2 provides inaccurate
measurements, with ICC < 0.005 in the three studied HR ranges. This low performance
may have resulted from improper development of the HR determination algorithms.



Bioengineering 2023, 10, 254 11 of 18

Figure 4 shows a box plot representing the APE for each of the four devices we
evaluated stratified by HR intervals. As can be observed, the TT and the AW display lower
APE values for HRs below 100 bmp and between 100 and 150 bmp, while their accuracy
is reasonable for frequencies above 150 bmp. The FB device offers an acceptable level
of accuracy for HR values below 100 bmp and between 100 and 150 bmp; however, the
precision is unreliable for frequencies above 150 bmp. The G2 has strong APE values across
all three examined ranges. Figures S1 and S2 of the Supplementary Material show the
threshold values at which motion artifacts become to be perceptible for all four devices.

To the best of our knowledge, this study is the first to assess the reliability of these
particular wrist-worn wearable devices (FB, TT, AW, G”) based on various HR ranges while
examining the impact of exercise intensity. Our findings demonstrate that HR accuracy is
markedly compromised across all devices as exercise intensity increases. Therefore, our
stratified and correlated study should be taken into account when prescribing exercise,
especially for people with underlying heart disease.

4.1. Main Implications and Future Perspectives

The aim of this study was to assess the accuracy of the chosen wearables as well as to
determine whether these devices are suitable as medical devices to assess exercise safety
or user health. It is important to increase the precision of the equipment that measures
medical parameters in order to assist athletes and patients with heart disease and lower
the risk of harm when exercising. It is essential to keep in mind that even if none of
these devices is certified or sold as a medical or safety device, their use is widespread
within the population, particularly in occasional and non-professional athletes [1,14,21].
In addition, not all wrist activity monitors are made to exact requirements. A number of
them have demonstrated unreliable accuracy when used for various activities and exercise
settings, including extreme physical activity [10,23,63,78–80]. It is worth mentioning that
this behavior can result in inaccurate or underestimated readings of the relevant physical
effort level, which can cause harmful behavior for unaware users.

Indeed, in order to fully understand how HR affects psychological and physical
health, future research to evaluate wrist-worn wearable technology is needed in order
to maximize the usefulness of new technologies, clarify the accuracy of physiological
data under conditions of more intense exercise, and clearly resolve researchers’ claims to
satisfy the FDA-approved gold standard. Regulatory standards must be prepared to ensure
the process of accurate evidence accumulation. Considering that companies rarely fully
validate new wearable models, it is important to use caution when comparing our findings
to earlier models, as it is unknown whether the sensors or algorithms have changed.

4.2. Strengths and Limitations of This Study

This research has the following strengths over prior studies. First, this study simulta-
neously assessed the HR accuracy of four popular wrist-worn activity monitors using the
most recent estimation techniques. For the calibration and validity of wrist-worn activity
monitoring devices, the use of “unit calibration” allows the signals to be appropriately
monitored. In these studies, it is imperative to evaluate different parameters such as ex-
ercise intensity [129,130], different skin pigmentation [132], sex, age range, and fitness
condition [133]. Second, we analyzed the absolute percent error for different HR ranges in
order to determine the frequency range at which motion artifacts become noticeable. In
addition, a stress test was performed on two different ergometers, namely, a cycle ergometer
and a treadmill. Third, participants in this study received in-depth education and training,
meaning that they were already familiar with how the devices worked. Fourth, utilizing an
ECG as the gold standard was a sensible decision that prevented system error resulting
from using instrument measurements. Lastly, for the analysis of the extracted data, we
used a rigorous statistical methodology, the Bland–Altman method, which is considered
the most appropriate statistical method for evaluating the measurement of biomedical
variables [134]. Many investigations often engage in inappropriately analysis [68] by using
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correlation coefficients [115]. This statistical methodology is suitable for studying different
HR ranges and the variance according to these HR ranges [45].

The study does, however, have certain limitations. First, the monitoring data were
collected from participants in a laboratory under controlled conditions; therefore, the out-
comes might not accurately mirror those in real-world settings. The amount of random
and incidental error resulting from measurements obtained in the subject’s natural state of
life can be significantly reduced by imposing specific constraints on the subject’s activity
settings. Second, because reduced PPG accuracy is linked to increased wearable move-
ment [135], there are various significant parameters that have been demonstrated to affect
HR accuracy, including wrist placement, wrist circumference, device tightness, dominant
vs. non-dominant hand use, and degree of wrist movement [109,136]. Lastly, only one cross-
sectional measurement was made for this study on seven male and one female volunteer
athletes of different ages, BMIs, and VO2,max with both light and dark skin. No additional
longitudinal measures were made. The sample size for female participants (1) and those
with dark skin (1) were not large enough to reach statistically significant conclusions, as
described in other studies [120,132]. However, these limited sample sizes was partially
offset by the simultaneous HR measurements made with a variety of wearable devices.

5. Conclusions

The main goal of the current study was to evaluate the performance and accuracy of
four commercially available wrist-worn wearables for monitoring HR at various activity
levels. Our results show that as exercise intensity increases there is a higher underestimation
of HR across all devices. The FB and G2 have medical device features that do not meet
the FDA-approved gold standard, and both are significantly incorrect above 150 bmp.
Particularly significant is that in cardiac rehabilitation, where many of these devices are
used, efficient intervention is needed to manage the intensity of physical exertion in order
to produce accurate HR readings at high-intensity levels (above 150 bpm). On the contrary,
the wrist-worn wearables developed by Apple and TT demonstrate the highest validity
for monitoring HR during a physical activity at different levels. Therefore, the validity of
exercise recommendations based on the heart rates measured by these devices is acceptable.
However, because these devices are frequently used to collect physiological data in long-
term medical investigations, more research must focus on varied populations and pursuits
to validate these findings. Furthermore, manufacturers might find this comparison helpful
in determining the general applicability of measurements provided by various vendors.
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105. Wilkosz, M.; Szczȩsna, A. Multi-Headed Conv-LSTM Network for Heart Rate Estimation during Daily Living Activities. Sensors
2021, 21, 5212. [CrossRef]

106. Sushames, A.; Edwards, A.; Thompson, F.; McDermott, R.; Gebel, K. Validity and Reliability of Fitbit Flex for Step Count,
Moderate to Vigorous Physical Activity and Activity Energy Expenditure. PLoS ONE 2016, 11, e0161224. [CrossRef]

107. Xie, J.; Wen, D.; Liang, L.; Jia, Y.; Gao, L.; Lei, J. Evaluating the Validity of Current Mainstream Wearable Devices in Fitness
Tracking Under Various Physical Activities: Comparative Study. JMIR mHealth uHealth 2018, 6, e94. [CrossRef]

108. Delgado-Gonzalo, R.; Parak, J.; Tarniceriu, A.; Renevey, P.; Bertschi, M.; Korhonen, I. Evaluation of accuracy and reliability of
PulseOn optical heart rate monitoring device. In Proceedings of the Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, Milan, Italy, 25–29 August 2015; Volume 2015, pp. 430–433. [CrossRef]

109. Nelson, B.W.; Allen, N.B. Accuracy of Consumer Wearable Heart Rate Measurement During an Ecologically Valid 24-Hour
Period: Intraindividual Validation Study. JMIR mHealth uHealth 2019, 7, e10828. [CrossRef]

110. Fuller, D.; Colwell, E.; Low, J.; Orychock, K.; Tobin, M.A.; Simango, B.; Buote, R.; Van Heerden, D.; Luan, H.; Cullen, K.; et al.
Reliability and Validity of Commercially Available Wearable Devices for Measuring Steps, Energy Expenditure, and Heart Rate:
Systematic Review. JMIR mHealth uHealth 2020, 8, e18694. [CrossRef]

111. Boudreaux, B.D.; Hebert, E.P.; Hollander, D.B.; Williams, B.M.; Cormier, C.L.; Naquin, M.R.; Gillan, W.W.; Gusew, E.E.; Kraemer,
R.R. Validity of Wearable Activity Monitors during Cycling and Resistance Exercise. Med. Sci. Sport. Exerc. 2018, 50, 624–633.
[CrossRef] [PubMed]

112. Thomson, E.A.; Nuss, K.; Comstock, A.; Reinwald, S.; Blake, S.; Pimentel, R.E.; Tracy, B.L.; Li, K. Heart rate measures from the
Apple Watch, Fitbit Charge HR 2, and electrocardiogram across different exercise intensities. J. Sport. Sci. 2019, 37, 1411–1419.
[CrossRef] [PubMed]

113. Horton, J.F.; Stergiou, P.R.O.; Fung, T.A.K.S.; Katz, L. Comparison of Polar M600 Optical Heart Rate and ECG Heart Rate during
Exercise. Med. Sci. Sport. Exerc. 2017, 49, 2600–2607. [CrossRef] [PubMed]

114. Chevance, G.; Golaszewski, N.M.; Tipton, E.; Hekler, E.B.; Buman, M.; Welk, G.J.; Patrick, K.; Godino, J.G. Accuracy and Precision
of Energy Expenditure, Heart Rate, and Steps Measured by Combined-Sensing Fitbits Against Reference Measures: Systematic
Review and Meta-analysis. JMIR mHealth uHealth 2022, 10, e35626. [CrossRef]

115. Jo, E.; Lewis, K.; Directo, D.; Kim, M.J.; Dolezal, B.A. Validation of Biofeedback Wearables for Photoplethysmographic Heart Rate
Tracking. J. Sport. Sci. Med. 2016, 15, 540–547.

116. Takacs, J.; Pollock, C.L.; Guenther, J.R.; Bahar, M.; Napier, C.; Hunt, M.A. Validation of the Fitbit One activity monitor device
during treadmill walking. J. Sci. Med. Sport 2014, 17, 496–500. [CrossRef]

117. Cassirame, J.; Vanhaesebrouck, R.; Chevrolat, S.; Mourot, L. Accuracy of the Garmin 920 XT HRM to perform HRV analysis.
Australas. Phys. Eng. Sci. Med. 2017, 40, 831–839. [CrossRef]

118. Giles, D.; Draper, N.; Neil, W. Validity of the Polar V800 heart rate monitor to measure RR intervals at rest. Eur. J. Appl. Physiol.
2016, 116, 563–571. [CrossRef]

119. Gamelin, F.X.; Berthoin, S.; Bosquet, L. Validity of the polar S810 heart rate monitor to measure R-R intervals at rest. Med. Sci.
Sport. Exerc. 2006, 38, 887–893. [CrossRef]

120. Spierer, D.K.; Rosen, Z.; Litman, L.L.; Fujii, K. Validation of photoplethysmography as a method to detect heart rate during rest
and exercise. J. Med. Eng. Technol. 2015, 39, 264–271. [CrossRef]

http://dx.doi.org/10.1109/EMBC.2014.6944419
http://dx.doi.org/10.1109/TBME.2014.2359372
http://dx.doi.org/10.3390/s20071923
http://dx.doi.org/10.1109/EMBC.2019.8857131
http://dx.doi.org/10.1109/EMBC.2015.7318864
http://dx.doi.org/10.1109/MEMB.2003.1213624
http://dx.doi.org/10.1364/OE.18.004867
http://dx.doi.org/10.1109/IEMBS.2007.4352596
http://dx.doi.org/10.1109/TITB.2010.2042607
http://dx.doi.org/10.3390/s21155212
http://dx.doi.org/10.1371/journal.pone.0161224
http://dx.doi.org/10.2196/mhealth.9754
http://dx.doi.org/10.1109/EMBC.2015.7318391
http://dx.doi.org/10.2196/10828
http://dx.doi.org/10.2196/18694
http://dx.doi.org/10.1249/MSS.0000000000001471
http://www.ncbi.nlm.nih.gov/pubmed/29189666
http://dx.doi.org/10.1080/02640414.2018.1560644
http://www.ncbi.nlm.nih.gov/pubmed/30657025
http://dx.doi.org/10.1249/MSS.0000000000001388
http://www.ncbi.nlm.nih.gov/pubmed/29135785
http://dx.doi.org/10.2196/35626
http://dx.doi.org/10.1016/j.jsams.2013.10.241
http://dx.doi.org/10.1007/s13246-017-0593-8
http://dx.doi.org/10.1007/s00421-015-3303-9
http://dx.doi.org/10.1249/01.mss.0000218135.79476.9c
http://dx.doi.org/10.3109/03091902.2015.1047536


Bioengineering 2023, 10, 254 18 of 18

121. Porto, L.G.G.; Junqueira, L.F.J. Comparison of time-domain short-term heart interval variability analysis using a wrist-worn
heart rate monitor and the conventional electrocardiogram. Pacing Clin. Electrophysiol. PACE 2009, 32, 43–51. [CrossRef]

122. Claes, J.; Buys, R.; Avila, A.; Finlay, D.; Kennedy, A.; Guldenring, D.; Budts, W.; Cornelissen, V. Validity of heart rate measurements
by the Garmin Forerunner 225 at different walking intensities. J. Med Eng. Technol. 2017, 41, 480–485. [CrossRef]

123. Caminal, P.; Sola, F.; Gomis, P.; Guasch, E.; Perera, A.; Soriano, N.; Mont, L. Validity of the Polar V800 monitor for measuring
heart rate variability in mountain running route conditions. Eur. J. Appl. Physiol. 2018, 118, 669–677. [CrossRef]

124. Hernando, D.; Garatachea, N.; Almeida, R.; Casajús, J.A.; Bailón, R. Validation of Heart Rate Monitor Polar RS800 for Heart Rate
Variability Analysis During Exercise. J. Strength Cond. Res. 2018, 32, 716–725. [CrossRef]

125. Schaffarczyk, M.; Rogers, B.; Reer, R.; Gronwald, T. Validity of the Polar H10 Sensor for Heart Rate Variability Analysis during
Resting State and Incremental Exercise in Recreational Men and Women. Sensors 2022, 22, 6536. [CrossRef]

126. Pasadyn, S.R.; Soudan, M.; Gillinov, M.; Houghtaling, P.; Phelan, D.; Gillinov, N.; Bittel, B.; Desai, M.Y. Accuracy of commercially
available heart rate monitors in athletes: A prospective study. Cardiovasc. Diagn. Ther. 2019, 9, 379–385. [CrossRef]

127. Chhetri, P.; Shrestha, L.; Mahotra, N.B. Validity of Elite-HRV Smartphone Application for Measuring Heart Rate Variability
Compared to Polar V800 Heart Rate Monitor. J. Nepal Health Res. Counc. 2022, 19, 809–813. [CrossRef]

128. Hettiarachchi, I.T.; Hanoun, S.; Nahavandi, D.; Nahavandi, S. Validation of Polar OH1 optical heart rate sensor for moderate and
high intensity physical activities. PLoS ONE 2019, 14, e0217288. [CrossRef]

129. Fokkema, T.; Kooiman, T.J.M.; Krijnen, W.P.; VAN DER Schans, C.P.; DE Groot, M. Reliability and Validity of Ten Consumer
Activity Trackers Depend on Walking Speed. Med. Sci. Sport. Exerc. 2017, 49, 793–800. [CrossRef]

130. Ho, W.T.; Yang, Y.J.; Li, T.C. Accuracy of wrist-worn wearable devices for determining exercise intensity. Digit. Health 2022,
8, 20552076221124393. [CrossRef]

131. Hernández-Vicente, A.; Hernando, D.; Marín-Puyalto, J.; Vicente-Rodríguez, G.; Garatachea, N.; Pueyo, E.; Bailón, R. Validity of
the Polar H7 Heart Rate Sensor for Heart Rate Variability Analysis during Exercise in Different Age, Body Composition and
Fitness Level Groups. Sensors 2021, 21, 902. [CrossRef] [PubMed]

132. Cabanas, A.M.; Fuentes-Guajardo, M.; Latorre, K.; León, D.; Martín-Escudero, P. Skin Pigmentation Influence on Pulse Oximetry
Accuracy: A Systematic Review and Bibliometric Analysis. Sensors 2022, 22, 3402. [CrossRef] [PubMed]

133. Degroote, L.; De Bourdeaudhuij, I.; Verloigne, M.; Poppe, L.; Crombez, G. The Accuracy of Smart Devices for Measuring Physical
Activity in Daily Life: Validation Study. JMIR mHealth uHealth 2018, 6, e10972. [CrossRef] [PubMed]

134. Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet
1986, 1, 307–310. [CrossRef]

135. Menghini, L.; Gianfranchi, E.; Cellini, N.; Patron, E.; Tagliabue, M.; Sarlo, M. Stressing the accuracy: Wrist-worn wearable sensor
validation over different conditions. Psychophysiology 2019, 56, e13441. [CrossRef]

136. Nelson, B.W.; Low, C.A.; Jacobson, N.; Areán, P.; Torous, J.; Allen, N.B. Guidelines for wrist-worn consumer wearable assessment
of heart rate in biobehavioral research. NPJ Digit. Med. 2020, 3, 90. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1111/j.1540-8159.2009.02175.x
http://dx.doi.org/10.1080/03091902.2017.1333166
http://dx.doi.org/10.1007/s00421-018-3808-0
http://dx.doi.org/10.1519/JSC.0000000000001662
http://dx.doi.org/10.3390/s22176536
http://dx.doi.org/10.21037/cdt.2019.06.05
http://dx.doi.org/10.33314/jnhrc.v19i04.3949
http://dx.doi.org/10.1371/journal.pone.0217288
http://dx.doi.org/10.1249/MSS.0000000000001146
http://dx.doi.org/10.1177/20552076221124393
http://dx.doi.org/10.3390/s21030902
http://www.ncbi.nlm.nih.gov/pubmed/33572800
http://dx.doi.org/10.3390/s22093402
http://www.ncbi.nlm.nih.gov/pubmed/35591092
http://dx.doi.org/10.2196/10972
http://www.ncbi.nlm.nih.gov/pubmed/30545810
http://dx.doi.org/10.1016/S0140-6736(86)90837-8
http://dx.doi.org/10.1111/psyp.13441
http://dx.doi.org/10.1038/s41746-020-0297-4

	Introduction
	Methods
	Participant Selection
	Study Setting
	HR Measuring Devices
	Tomtom Runner Cardio (TT)
	FitBit (FB)
	Apple Watch (AW)
	Gear S2 (G2)

	Statistical Analysis

	Results
	Discussion
	Main Implications and Future Perspectives
	Strengths and Limitations of This Study

	Conclusions
	References

